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In some practical situations strong chaos is needed. This introduces the task of chaos control with enhancing
chaoticity rather than suppressing chaoticity. In this paper a simple method of linear amplifications incorpo-
rating modulo operations is suggested to make spatiotemporal systems, which may be originally chaotic or
nonchaotic, strongly chaotic. Specifically, this control can eliminate periodic windows, increase the values and
the number of positive Lyapunov exponents, make the probability distributions of the output chaotic sequences
more homogeneous, and reduce the correlations of chaotic outputs for different times and different space units.
The applicability of the method to practical tasks, in particular to random number generators and secure
communications, is briefly discussed.
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I. INTRODUCTION

Since the pioneering work of Ott, Grebogi, and Yorke
sOGYd f1g, the topic of chaos control has attracted much
attention in the nonlinear science community as well as in
diverse related fieldsf2–8g. Most works on chaos control
have been focused on the suppression of chaotic motion.
However, suppressingsor killingd chaos is not the only inter-
est of chaos control. In some realistic applications chaoticity
is a desirable property, which should be developed and used
sone of the typical examples is chaos communicationd. Re-
cently a few works have studied the problem of how to make
dynamical systems chaotic. This includes how to make non-
chaotic systems chaotic and how to change less chaotic sys-
tems to be more intensively chaoticf9–18g. Nevertheless,
there are still very few systematic investigations in this
direction.

In this paper it is our task to suggest a systematic as well
as simple scheme to modify nonlinear systemsswhich may
be chaotic or nonchaotic originallyd to be excellently chaotic
sthe meaning of “excellently chaotic” will be explained
laterd. Since spatiotemporal chaos is expected to have, in
many realistic situations, much more useful applications than
low-dimensional chaos, we will consider coupled chaotic
maps as our model. In Sec. II, this model system will be
introduced, and a number of disadvantages of the system
about its chaoticity will be discussed. In Sec. III, we will
modify the coupled chaotic map lattice by combining linear
amplifications and modulo operations. With these simple
changes, the modified spatiotemporal system has excellent
chaotic properties, such as the absence of periodic windows,
larger values and larger number of positive Lyapunov expo-
nents, homogeneous probability distribution of chaotic se-

quences, extremely short correlation time, and short spatial
correlation distance of various chaotic sequences. In Sec. IV,
possible applications of this scheme to random number gen-
erators and secure communications are briefly discussed. The
extension of this method to different spatiotemporal chaotic
systems is also emphasized in this section.

II. MODEL

We consider the following one-way ring of coupled map
lattice sCMLd:

xn+1sid = s1 − «df„xnsid… + «f„xnsi − 1d…, s1ad

i = 1,2, . . . ,N, xnsi + Nd = xnsid. s1bd

For the local dynamics, we use the logistic map with fully
developed chaos,

fsxd = 4xs1 − xd. s2d

In Eq. s1d we use the coupling« as the adjustable parameter.
As «=0 or «=1, we recover the results of a single logistic
map. For 0,«,1, the coupling plays an essential role in
changing the dynamic behavior of the system. Let us first
study the features of Eq.s1d. Without losing generality we fix
the system sizeN=10. Extensions to the cases of general
system sizes will be discussed in Sec. IV. Though there have
been many works investigating systems1d f19–23g, some
features of Eq.s1d still have not been completely revealed. In
the following we will show some characteristic behaviors of
Eq. s1d.

The following dynamical properties of the CML system
are of great interest and significance:sid the chaotic and pe-
riodic parameter regions;sii d the largest Lyapunov exponent
and the numbers of positive Lyapunov exponents;siii d the
probability distributions of chaotic sequences for different*Corresponding author.
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couplings;sivd the temporal and spatial correlations of the
output chaotic sequences. All these properties are crucial for
applications of chaos, especially for the applications of chaos
communications.

In Fig. 1sad we plot the largest Lyapunov exponentl1 of
the system against the coupling strength«. l1 is positive in
some regions, corresponding to chaotic motions. However,
there exist some periodic and other nonchaotic windows,
where l1ø0. The existence of these nonchaotic windows
may be seriously harmful in applications, where any noncha-
otic behavior should be avoided.

In Fig. 1sbd we plot the number of positive Lyapunov
exponentsm vs the coupling«. m=10 is observed only in
very small parameter regions near«=0 and«=1. We find
m,10 in a large« regionss0.865.«.0.135d andm=0 in
some« areas of period windows. Though the local dynamics
of Eq. s2d is fully developed chaos, the collective motion of
the coupled spatiotemporal system can be nonchaotic or
weakly chaotic in the sense thatm is considerably smaller
than the dimension of the systemsN=10d. These weakly

chaotic motions are not good for chaos applications.
In Fig. 1scd we measure the probability distribution of an

output sequence from a site arbitrarily chosen for«=0.10 at
which the system possesses relatively strong chaos, i.e., the
system has largel1 sl1=0.452d and largem sm=10d. We
find that even for this high-dimensional spatiotemporal chaos
the probability distribution is still strongly inhomogeneous.
The inhomogeneity exposes much information of the deter-
ministic dynamics and this is a serious drawback when the
random behavior of chaos is required. Figure 1scd shows that
the chaotic sequence may not meet the requirement of ran-
domness even in the case of strongly chaotic motion of spa-
tiotemporal chaos.

In Figs. 1sdd and 1sed we compute various correlation
functions. In Fig. 1sdd the autocorrelationC11std, which is
defined as

Ciistd = Ĉiistd/Ĉiis0d, s3d

Ĉiistd = lim
T→`

1

To
n=1

T

xnsidxn+tsid − S lim
T→`

1

To
n=1

T

xnsidD2

, s4d

is plotted vst at «=0.10. Nonzero autocorrelation can be
clearly observed for even very larget se.g., fortø13d. Such
long-term correlation is definitely harmful when one uses
chaotic systems as random number generators. In Fig. 1sed,
the mutual correlationsC12std, C13std, andC14std, which are
defined as

Cijstd = Ĉijstd/ÎĈiis0dĈj js0d,

Ĉijstd = lim
T→`

1

To
n=1

T

xnsidxn+ts jd − S lim
T→`

1

To
n=1

T

xnsidD
3S lim

T→`

1

To
n=1

T

xns jdD , s5d

are plotted againstt. Though the mutual correlation between
two sites decreases as their space distance increases, this
decreasing tendency is not fast so that the chaotic sequences
of two nonadjacent sites still have observable nonzero mu-
tual correlation. When we intend to output the chaotic se-
quences from different sites in parallel, these nonzero mutual
correlations are often inadequate.

From Figs. 1sad–1sed we find that even for strongly cha-
otic and high-dimensional systems, there may still exist some
serious disadvantages of chaoticity. It is the task of the next
section to find simple methods to enhance the chaoticity of
the system, i.e., one may introduce some modifications that
can be easily realized to overcome all the drawbacks of
Fig. 1, and make the system achieve the desirable chaoticity.

III. ENHANCING CHAOTICITY OF SPATIOTEMPORAL
CHAOS

In order to improve the chaoticity properties of the CML
system, we modify Eq.s1d by the following linear amplifi-
cations and modulo operations:

FIG. 1. Numerical results of the CML system Eq.s1d with map
function Eq.s2d; N=10. sad The largest Lyapunov exponentl1 vs
coupling parameter«. Nonchaotic windows have a finite measure in
the parameter space.sbd The number of positive Lyapunov expo-
nentsm plotted vs«. The regions wherem=N=10 are very small,
located near«=0 and«=1. scd, sdd, sed «=0.10, corresponding to
l1=0.4518 andm=10 for Eq. s1d. scd Probability distribution
r(xs1d) plotted vsxs1d. 100 meshes andM =106 iterations are used
for producing the distribution. The density of a given meshx is
computed asrsxd=100sMx/Md with Mx being the number of data
falling in the meshx. The distribution is strongly inhomogeneous.
sdd AutocorrelationC11std, defined in Eqs.s3d ands4d, plotted vst.
NonzeroC11std can be clearly seen for rather larget se.g.,tø13d.
sed Mutual correlationsfdefined in Eq.s5dg C12std, C13std, and
C14std plotted vs t. Even between the first and the fouth sites,
C14std is observably nonzero fort,25.
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x̂n+1sid = s1 − «df„xnsid… + «f„xnsi − 1d…, s6ad

xn+1sid = f2nx̂n+1sidgmod 1. s6bd

We would like to emphasize that the control modifications
Eq. s6d are simple and realizable in some practical applica-
tions. First, in computer simulations, the operation of
Eq. s6bd does not cause any computational problem. There-
fore the algorithm Eq.s6d can be directly used in practical
applications of chaos communications with software realiza-
tion. Second, for practical physical systems, there are many
easy ways in realizing the linear-amplification operationfthe
multiple factor 2n in Eq. s6bdg. Moreover, by combining the
results of comparisons and subtractions the modulo opera-
tions can be realized in electrical circuits without great dif-
ficulty. In Eq. s6bd, the modulo is performed in the interval
f0,1g. The features shown in Secs. III and IV do not change if
the modulo interval is changed.

Some effects of Eq.s6bd can be intuitively estimated. For
instance, increasing the linear multiple factor 2n will defi-
nitely increase the largest Lyapunov exponent of system Eq.
s6d. This makes the nonchaotic system chaotic, and makes
chaos stronger. However, in order to fully understand the
essential influences of operations Eq.s6bd, and to explain
how these control modifications can overcome the disadvan-
tages of Eq.s1d shown in Figs. 1sad–1sed, we should inves-
tigate Eq.s6d in detail.

First, we study how the modifications of Eq.s6bd can
change the largest Lyapunov exponent and the period-
window stucture. In Figs. 2sad–2sed we plot l1 of Eq. s6d vs
« for different n’s. We find that fornù1, the nonchaotic
windows of Fig. 1sad disappear. It is interesting as well as
surprising that asn increases the function ofl1s« ,nd ap-

proaches a unique asymptotic form, which is independent of
n. l1s« ,nd depends only on the dynamics of Eq.s6ad. The
unique asymptotic function can be represented as

l1s«,nd = n ln 2 + l̂1s«d. s7d

In Fig. 2sfd we plot l̂1s«d=l1s« ,nd−n ln 2 vs « for different
n’s snù7d. It can be found that all data fall in an approxi-
mately identical curve, verifying the validity of Eq.s7d.

In Fig. 3 we compute the Lyapunov exponent spectra of
systems6d and plot the number of positive Lyapunov expo-
nentsm vs « for different n’s. It is shown that we havem
ù8 for nù1 andm=10 for all nù8. Therefore for largen
snù8d systems6d becomes strongly chaotic, and the chaotic
attractor has the highest expansion dimensionm=10 for the
system sizeN=10. The scheme of Eq.s6d is surprisingly
effective in increasing the expansion dimension.

For studying probability distributions of output sequences
we do the same procedure as Fig. 1scd in Figs. 4sad–4sdd for
different n’s. The distributions become more and more ho-
mogeneous asn increases. One may measure the maximum
and the minimum probability densitiesrmaxsxmaxd and
rminsxmind, and compute the largest deviation,

Dr = rmaxsxmaxd − rminsxmind. s8d

In Fig. 4sed we plot Dr vs n for «=0.10 ssquaresd and 0.30
sblack dotsd, respectively.Dr decreases quickly asn in-
creases. This behavior is expected since the linear amplifica-
tion together with the modulo operation can effectively flat-
ten the distribution. The behavior of Fig. 4sed is observed for
all different «’s tested in the regime 0,«,1. The control-
lability of the homogeneity of the probability distributions of
the output chaotic sequences is greatly welcome when these
systems are used as random number generators.

The last criterion of the chaoticity of Eq.s6d is its auto-
correlations and mutual correlations. In Fig. 5 we plot the
autocorrelationsCiistd vs t of Eq. s6d for different «’s and
different n’s. It is observed that asn becomes largese.g.,n
ù3d we obtainCiistd<0 for tÞ0. Exponential decays of

FIG. 2. sad–sed The same as Fig. 1sad by computing Eq.s6d for
different n’s. Nonchaotic windows disappear fornù1. sfd As n
increases the functionls« ,nd−n ln 2 becomes independent ofn.

FIG. 3. The same as Fig. 1sbd by computing Eq.s6d for different
n’s. We find mù8 for nù1. As n is large snù8d the number of
positive Lyapunov exponents saturates to the largest valuem=N
=10.
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Ciistd’s with respect ton are clearly shown in Fig. 5sdd for
different t’s. In Figs. 6sad–6sdd we plot the mutual correla-
tions C1istd’s, i =2,3,4 vst for different «’s andn’s. Again,
exponential decays ofC1istd’s with respect ton are justified.
All results in Figs. 5 and 6 indicate that by increasingn we
can effectively decrease correlations of the output chaotic
data for different times and different space units. The prop-
erties of small autocorrelation fortÞ0, small mutual corre-
lations, and effectiveness of the method in controlling these
correlations are very crucial when chaoticity is required in
practical applications.

In order to make a complete comparison of the dynamic
features of Eq.s6d with those of Eq.s1d, we do exactly the
same in Figs. 7sad–7sed as in Figs. 1sad–1sed by replacing

Eq. s1d with Eq. s6d for n=8. It is remarkable that all the
disadvantages of Fig. 1 mentioned in Sec. II are satisfactorily
overcome in Fig. 7.

IV. EXTENSIONS AND DISCUSSIONS

In the last section we focused on a particular CML system
Eq. s6d with the nonlinear functionfsxd=4xs1−xd and the
system sizeN=10. The control mechanism of Eq.s6bd is
generally effective for different coupled chaotic maps. For
instance, we have studied in detail systems6d with N=15 and
other larger sizes. The results are fully in agreement with
those presented in Figs. 2–7. Moreover, the effectiveness of
the above control method is independent of the form of the

FIG. 4. sad–sdd The same as Fig. 1scd by computing Eq.s6d for
different n’s. sed Dr defined in Eq.s8d plotted vsn. As n increases,
Dr goes to zero.

FIG. 5. The same as Fig. 1sdd by computing Eq.s6d for different
«’s andn’s. As n is large the autocorrelation goes to zero quickly as
tÞ0.

FIG. 6. sad–scd The same as Fig. 1sed by computing Eq.s6d for
different n’s. sdd ln C12st=1d plotted vsn for different «’s.

FIG. 7. sad–sed The same as Fig. 1sad–1sed, respectively, with
Eqs.s2d ands6d applied for computations.n=8. All the weak points
of Eq. s1d manifested in Fig. 1 are satisfactorily overcome.
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nonlinear function. We have used other nonlinear functions
to replace the logistic function Eq.s2d fe.g., the tent map
fsxd=1−u2x−1u, the sinusoidal mapfsxd=sinspxd, and the
exponential mapfsxd=x exps1−xndg and got similar results.
The effectiveness of this control scheme is also independent
of the coupling structure. In Fig. 8, we use the following
symmetrically coupled map lattice:

x̂n+1sid = s1 − 2«df„xnsid… + «ff„xnsi − 1d… + f„xnsi + 1d…g,

s9d

xnsid = f2nx̂nsidgmod 1, fsxd = 4xs1 − xd,

and do exactly the same as in Fig. 7. Similar results can be
obtained.

The method suggested in this paper is applicable not only
to coupled chaotic maps, but also to other spatiotemporal
systems, in particular to coupled chaotic oscillators with con-
tinuous time. Let us considerN coupled Rossler oscillators:

ẋi = − yi − zi + «sxi+1 + xi−1 − 2xid,

ẏi = xi + ayi + «syi+1 + yi−1 − 2yid,

żi = b + sxi − cdzi + «szi+1 + zi−1 − 2zid,

xi+N = xi,yi+N = yi,zi+N = zi,i = 1,2, . . . ,N. s10d

Whena=0.45,b=2.0, andc=4.0, the single Rossler oscilla-
tor is chaotic. In Fig. 9sad we calculate the largest Lyapunov
exponentl1 of the coupled systems10d against« for N=10.
It is obvious that nonchaotic windows corresponding tol1

=0 exist in some« regions. In Fig. 9sbd the number of posi-
tive Lyapunov exponents of Eq.s10d m is plotted against«.
m is small in a large« region. Figures 9sad and 9sbd show
that the chaoticity of systems10d is weak in a large« domain
with small l1 and m. Now we modify Eq.s10d by kicked
control, namely, by periodically resetting the variables by
amplifications and modulo operations as

xst → nT+ 0d = F1„xst → nT− 0d…,

yst → nT+ 0d = F2„yst → nT− 0d…, s11ad

zst → nT+ 0d = F3„zst → nT− 0d…,

F1sxd = 2nx moda1,

F2syd = 2ny moda2,

F3szd = 2nzmoda3,

n = 1,2,3, . . . . s11bd

For tÞnT the dynamics of Eq.s10d is not changed.T is
chosen to beT=6.07, which is the average phase period of
the single Rossler equation for the given parameters,a1
=31, a2=29, anda3=35, which are chosen assxmax−xmind,
symax−ymind, and szmax−zmind, respectively, with
sxmax,ymax,zmaxd and sxmin,ymin,zmind being the maximum
and minimun values ofsx,y,zd of Eq. s10d. In Figs. 9scd and
9sdd we do the same as insad andsbd, respectively, by incor-
porating the modifications of Eq.s11d. Considerable im-
provement of chaoticity is obviously observed inscd andsdd.

In conclusion, we have suggested an effective and practi-
cally realizable method, linear amplifications together with
modulo operations, for spatiotemporal chaos control. The
control purpose is to enhance chaoticity rather than suppress

FIG. 8. sad–sed The same as Figs. 7sad–7sed, respectively, with
the symmetrical coupling Eq.s9d applied. All the behaviors of chao-
ticity of Fig. 7 are not changed by changing the coupling structure.

FIG. 9. a=0.45,b=2.0,c=4.0, andN=10 for Eq.s10d. sad The
largest Lyapunov exponentl1 of Eq. s10d plotted vs«. sbd The
number of positive Lyapunov exponentsm of Eq. s10d plotted vs«.
scd and sdd The same assad and sbd, respectively, by including the
transformations Eq.s11d with T=6.07,a1=31, a2=29, a3=35, and
n=8.
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chaos. We have successfully eliminated nonchaotic windows,
increased the values and numbers of positive Lyapunov ex-
ponents, made the probability distributions of the output cha-
otic sequences more homogeneous, and reduced the correla-
tions of chaotic sequences for different times and different
space units. Though some of the observations, shown in Figs.
2 and 4, are intuitively expected and not surprising, the effi-
ciency of all these improvements are impressive both theo-
retically and conceptionally. In particular, the possibility of
applications is apparently significant.

Let us finish this presentation by a brief discussion on the
applications of this method in designing optimal random-
number generators and secure chaos-based cryptosystems.
Since chaotic sequences have advantages of nonperiodicity,
sensitive dependence on initial conditions, and randomlike
behavior, the topics of applying chaotic systems to construct
random-number generators and to design devices of secure
communications have attracted much attention in the recent
two decadesf24–27g. However, it has been found that most
of the chaos-based random-number generators and secure
communication schemes previously proposed fail to exhibit
the expected random and secure properties. The key reason is
that chaotic dynamics can be easily reconstructed from the
publicly transmitted signalf28–33g. Let us use Eq.s1d as an
example to explain this point. We fix parameters«=0.10 and
N=2 and use the chaotic sequence of the second mapxns2d
as our output. In Fig. 10sad we numerically plotxns2d against
the pair of data(xn−1s2d ,xn−2s2d), and find that the function is
smooth and the dynamics of the original chaotic system is
practically reconstructable. With the function surface of Fig.
10sad we can well predict the future outputxns2d from two
previous successive dataxn−1s2d and xn−2s2d. Thus the sys-
tem has very weak security and randomness.

Now we can compare the results of the modified system
s6d with Fig. 10sad. In Figs. 10sbd–10sed we do exactly the
same as in Fig. 10sad by computing Eq.s6d instead of Eq.
s1d. As n increases the smoothness of the function
xnsxn−1,xn−2d is severely broken, and the output becomes
more and more random. Consequently, the predictability
from sxn−1,xn−2d to xn becomes more and more difficult. This
improvement of randomness is greatly significant since the
control method is very simple and the level of securitysi.e.,
randomnessd can be well adjusted and controlled by choos-
ing differentn. Of course, the behavior shown in Figs. 10sdd

and 10sed is only a necessary but not sufficient condition for
constructing optimal random number generators and secure
communications.
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