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Enhancing chaoticity of spatiotemporal chaos
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In some practical situations strong chaos is needed. This introduces the task of chaos control with enhancing
chaoticity rather than suppressing chaoticity. In this paper a simple method of linear amplifications incorpo-
rating modulo operations is suggested to make spatiotemporal systems, which may be originally chaotic or
nonchaotic, strongly chaotic. Specifically, this control can eliminate periodic windows, increase the values and
the number of positive Lyapunov exponents, make the probability distributions of the output chaotic sequences
more homogeneous, and reduce the correlations of chaotic outputs for different times and different space units.
The applicability of the method to practical tasks, in particular to random number generators and secure
communications, is briefly discussed.
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[. INTRODUCTION quences, extremely short correlation time, and short spatial

) ) ] ) correlation distance of various chaotic sequences. In Sec. 1V,
Since the pioneering work of Ott, Grebogi, and Yorke hyssiple applications of this scheme to random number gen-
(OGY) [1], the topic of chaos control has attracted mucherators and secure communications are briefly discussed. The

attention in the nonlinear science community as well as inyytension of this method to different spatiotemporal chaotic
diverse related field§2—8]. Most works on chaos control systems is also emphasized in this section.

have been focused on the suppression of chaotic motion.
However, suppressingr killing) chaos is not the only inter-

est of chaos control. In some realistic applications chaoticity Il. MODEL

is a desirable property, which should be developed and used ) ) )

(one of the typical examples is chaos communicatidte- We consider the following one-way ring of coupled map
cently a few works have studied the problem of how to makdattice (CML):

dynamical systems chaotic. This includes how to make non- Xoug(i) = (1 = £)F(x(i)) + £F(x(i = 1)), (1a)

chaotic systems chaotic and how to change less chaotic sys-

tems to be more intensively chaoti®—18. Nevertheless, . . .

there are still very few systematic investigations in this =12, N (i + N) = (1) (1b)

direction. For the local dynamics, we use the logistic map with fully
In this paper it is our task to suggest a systematic as weljeveloped chaos,

as simple scheme to modify nonlinear systembich may

be chaotic or nonchaotic originajlyo be excellently chaotic f(x) =4x(1 -x). 2

(the meaning of “excellently chaotic” will be explained |, Eq. (1) we use the coupling as the adjustable parameter.

latep. Sin.ce' spgtiotgmporal chaos is expected_ to'have, "As e=0 or e=1, we recover the results of a single logistic
many realistic situations, much more useful applications tharllnap_ For 0<s<1, the coupling plays an essential role in

low-dimensional chaos, we will consider coupled chaotiCqpanging the dynamic behavior of the system. Let us first
maps as our model. In Sec. II, this model system will beqy,qy the features of Eq1). Without losing generality we fix
introduced, and a number of disadvantages of the syste

its chaofici il : i fhe system sizéN=10. Extensions to the cases of general
aboqt Its chaoticity wi b.e dlscussgd. In Sec. ll, we wi system sizes will be discussed in Sec. IV. Though there have
modl_fy thg coupled chaotic map Iat_tlce by (_:omblnmg I|_nearbeen many works investigating systeft) [19-23, some
amplifications and modulo operations. With these simplggaqres of Eq(1) still have not been completely revealed. In

changes, the fT‘Od'f'ed spatiotemporal system_ ha}s gxcelleme following we will show some characteristic behaviors of
chaotic properties, such as the absence of periodic wmdow%

larger values and larger number of positive Lyapunov expo-

:I'he. following dynamical properties of the CML system
nents, homogeneous probability distribution of chaotic se g cy prop y

are of great interest and significan¢®: the chaotic and pe-
riodic parameter regionsii) the largest Lyapunov exponent
and the numbers of positive Lyapunov exponeltiis) the
*Corresponding author. probability distributions of chaotic sequences for different
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08 @) )] chaotic motions are not good for chaos applications.
0.4l 8 In Fig. 1(c) we measure the probability distribution of an
A m output sequence from a site arbitrarily chosende10.10 at
0.0} 4 which the system possesses relatively strong chaos, i.e., the
system has larga; (\;=0.452 and largem (m=10). We
04 0 find that even for this high-dimensional spatiotemporal chaos
00 02 04 06 08 10 0002040608 10 the probability distribution is still strongly inhomogeneous.
3 & L2 The inhomogeneity exposes much information of the deter-
(c) 7140' (d)_ 9 . ministic dynamics and this is a serious drawback when the
2t S fz random behavior of chaos is required. Figufe) shows that
p C%_s_ 54 K the chaotic sequence may not meet the requirement of ran-
1l 0 5.1 domness even in the case of strongly chaotic motion of spa-
- = tiotemporal chaos.
0 ¢=0.10 0.0 \‘"m s=0.10 In Figs. 1d) and Xe) we compute various correlation
0.0 02 °'4x°'6 0810 0 5 10,1520 25 functions. In Fig. 1d) the autocorrelatiorC,;(7), which is
(e) ¢=0.10 defined as
0.2 —=—i=2 R -
— —e—i=3 Cii(n) = C;i(nIC;(0), 3
=2 —a— =4
) 1 T 1 T 2
00 Cii(n) = lim —Exn(nxnﬂ(i)—(nm —Exn(n) . (4
0 5 10 15 20 25 T Tpoy T—e T
T

_ _ is plotted vst at £e=0.10. Nonzero autocorrelation can be
FIG. 1. Numerical results of the CML system Ed) with map  clearly observed for even very largde.g., forr<13). Such
function Eq.(2); N=10. (a) The largest Lyapunov exponei vs  |ong-term correlation is definitely harmful when one uses
coupling parametes. Nonchaotic windows have a finite measure in chaotic systems as random number generators. In F&y, 1

the parameter spacé) The number of positive Lyapunov expo- the mutual correlation€,(7), C15(7), andCy4(7), which are
nentsm plotted vse. The regions wheren=N=10 are very small, defined as

located neag=0 ande=1. (c), (d), (e) £=0.10, corresponding to

A1=0.4518 andm=10 for Eq. (1). (c) Probability distribution R N
p(x(1)) plotted vsx(1). 100 meshes ankll =1(F iterations are used C'J(T) B C'I(T)/ C”(O)C”(O)’
for producing the distribution. The density of a given mesis

computed ap(x)=100M,/M) with M, being the number of data A 1 T . . 1 T )

falling in the meshx. The distribution is strongly inhomogeneous. Cij(7) = lim 'I_'E Xn()Xne,(J) = | lim ?2 Xn(i)

(d) AutocorrelationCy(7), defined in Eqgs(3) and(4), plotted vsr. T Tn=t T Tn=l
NonzeroCq,(7) can be clearly seen for rather largée.g.,7<13). 1 T

(e) Mutual correlations[defined in Eq.(5)] Cyx(7), Ci5(7), and X(Iim —E xn(j)), (5)
Ci4(7) plotted vs 7. Even between the first and the fouth sites, T—e Tpy

C is ob bl for< 25. . .
14(7) Is observably nonzero for are plotted against. Though the mutual correlation between

couplings; (iv) the temporal and spatial correlations of thetwo sites decreases as their space distance increases, this

output chaotic sequences. All these properties are crucial fafecreasing tendency is not fast so that the chaotic sequences

applications of chaos, especially for the applications of chaosf two nonadjacent sites still have observable nonzero mu-

communications. tual correlation. When we intend to output the chaotic se-
In Fig. 1(a) we plot the largest Lyapunov exponentof  quences from different sites in parallel, these nonzero mutual

the system against the coupling strength\; is positive in  correlations are often inadequate.

some regions, corresponding to chaotic motions. However, From Figs. 1a)-1(e) we find that even for strongly cha-

there exist some periodic and other nonchaotic windowsgtic and high-dimensional systems, there may still exist some

where \;<0. The existence of these nonchaotic windowsserious disadvantages of chaoticity. It is the task of the next

may be seriously harmful in applications, where any nonchasection to find simple methods to enhance the chaoticity of

otic behavior should be avoided. the system, i.e., one may introduce some modifications that
In Fig. 1(b) we plot the number of positive Lyapunov can be easily realized to overcome all the drawbacks of

exponentsm vs the couplinge. m=10 is observed only in Fig. 1, and make the system achieve the desirable chaoticity.

very small parameter regions neax0 andes=1. We find

m<10 in a larges regions(0.865>£>0.139 andm=01in ENHANCING CHAOTICITY OF SPATIOTEMPORAL

somee areas of period windows. Though the local dynamics CHAOS

of Eq. (2) is fully developed chaos, the collective motion of

the coupled spatiotemporal system can be nonchaotic or In order to improve the chaoticity properties of the CML

weakly chaotic in the sense that is considerably smaller system, we modify Eq(1) by the following linear amplifi-

than the dimension of the systefhl=10). These weakly cations and modulo operations:

016216-2



ENHANCING CHAOTICITY OF SPATIOTEMPORAL CHAOS PHYSICAL REVIEW H1, 016216(2005

@ (@) (b) | (@v=1 (bv=3
< v=1 v=3 ) 10
1.2 H
m
125
8
1.0
5.4
& ©) d (cv=6 (d)v=8
¥ v=7 v=12 10 -
8.8 |
53 m
8.7 8
Al 0.0 0.2 04 06 0.8 1.0
- - 0002040680810 000204060810
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10.2) v=14 0.5
= 3|’ FIG. 3. The same as Fig(d) by computing Eq(6) for different
;‘- §— v's. We findm=8 for v=1. As v is large (v=8) the number of
- oy positive Lyapunov exponents saturates to the largest valzél
’ ’ =10.

0.0 02 04 06 0.8 1.0 0.0 0.28 04
&€ . . . -
proaches a unique asymptotic form, which is independent of

FIG. 2. (—(e) The same as Fig.(4) by computing Eq(6) for ~ v. A\4(¢,v) depends only on the dynamics of E§a). The
different »'s. Nonchaotic windows disappear for=1. (f) As v  unique asymptotic function can be represented as
increases the function(e,v)—vIn 2 becomes independent of

M(e,p) =vIn2+\y(e). 7)
Xne1(i) = (L —&)F(x,(0)) + ef(xy(i — 1)), (68 In Fig. 2Af) we plotAy(e)=\(e,v)—vIn 2 vs& for different
v's (v=7). It can be found that all data fall in an approxi-
Xoe1(1) = [2"%41(i)Jmod 1. (6b) ~ Mately identical curve, verifying the validity of Eq?).

In Fig. 3 we compute the Lyapunov exponent spectra of
We would like to emphasize that the control modificationsSystem(6) and plot the number of positive Lyapunov expo-
Eq. (6) are simple and realizable in some practical applican€ntsm vs e for different »'s. It is shown that we haven
tions. First, in computer simulations, the operation of=8 for =1 andm=10 for all »=8. Therefore for large-
Eq. (6b) does not cause any computational problem. Theretv=8) system(6) becomes strongly chaotic, and the chaotic
fore the algorithm Eq(6) can be directly used in practical attractor has the highest expansion dimensienlO for the
applications of chaos communications with software realizasystem sizeN=10. The scheme of Ed6) is surprisingly
tion. Second, for practical physical systems, there are mangffective in increasing the expansion dimension.
easy ways in realizing the linear-amplification operafitire For studying probability distributions of output sequences
multiple factor 2 in Eq. (6b)]. Moreover, by combining the we do the same procedure as Fi¢c)lin Figs. 4a)—-4(d) for
results of comparisons and subtractions the modulo operdalifferent v’s. The distributions become more and more ho-
tions can be realized in electrical circuits without great dif-mogeneous as increases. One may measure the maximum
ficulty. In Eq. (6b), the modulo is performed in the interval and the minimum probability densitiepma(Xma) and
[0,1]. The features shown in Secs. Il and IV do not change ifpmin(Xmin), @nd compute the largest deviation,
the modulo interval is changed. _ _

Some effects of Eq(6b) can be intuitively estimated. For Ap = pmaxXmax) = Pmin(Xmin) - (8)
instance, increasing the linear multiple factof \&ill defi- In Fig. 4(e) we plotAp vs v for £=0.10 (squaresand 0.30
nitely increase the largest Lyapunov exponent of system Edblack dot3, respectively.Ap decreases quickly as in-

(6). This makes the nonchaotic system chaotic, and makesreases. This behavior is expected since the linear amplifica-
chaos stronger. However, in order to fully understand theion together with the modulo operation can effectively flat-
essential influences of operations Eb), and to explain ten the distribution. The behavior of Figie}is observed for
how these control modifications can overcome the disadvarall different ¢’s tested in the regime €e<<1. The control-
tages of Eq(1) shown in Figs. (a)-1(e), we should inves- lability of the homogeneity of the probability distributions of
tigate Eq.(6) in detail. the output chaotic sequences is greatly welcome when these

First, we study how the modifications of E¢Gb) can  systems are used as random number generators.
change the largest Lyapunov exponent and the period- The last criterion of the chaoticity of E@6) is its auto-
window stucture. In Figs. (2)-2(e) we plot\,; of Eq.(6) vs  correlations and mutual correlations. In Fig. 5 we plot the
e for different v's. We find that forv=1, the nonchaotic autocorrelationsC;(7) vs 7 of Eq. (6) for different&’s and
windows of Fig. 1a) disappear. It is interesting as well as different v's. It is observed that as becomes largée.qg., v
surprising that as increases the function ofi(e,v) ap- =3) we obtainC;(7)=0 for 7# 0. Exponential decays of
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FIG. 6. (a)—(c) The same as Fig.(&) by computing Eq(6) for
different v’s. (d) In C;,(7=1) plotted vswv for differente’s.

——— Eqg. (1) with Eqg. (6) for »=8. It is remarkable that all the
0246 81012 disadvantages of Fig. 1 mentioned in Sec. |l are satisfactorily
v overcome in Fig. 7.

FIG. 4. (a)—(d) The same as Fig.(&¢) by computing Eq(6) for

different v's. (e) Ap defined in Eq(8) plotted vsv. As v increases, IV. EXTENSIONS AND DISCUSSIONS
Ap goes to zero. . ]

In the last section we focused on a particular CML system
Ci(7)'s with respect tov are clearly shown in Fig.(8) for ~ Ed. (6) with the nonlinear functiorf(x)=4x(1-x) and the
different 7s. In Figs. §a)-6(d) we plot the mutual correla- System sizeN=10. The control mechanism of E¢6b) is
tions Cyi(7)’s, i=2,3,4 vsr for differente’s andv's. Again, ~ generally effective for different coupled chaotic maps. For
exponential decays d,;(7)’s with respect tov are justified. ~ instance, we have studied in detail systénwith N=15 and
All results in Figs. 5 and 6 indicate that by increasingie  Other larger sizes. The results are fully in agreement with
can effectively decrease correlations of the output chaotiéhose presented in Figs. 2-7. Moreover, the effectiveness of
data for different times and different space units. The propth€ above control method is independent of the form of the
erties of small autocorrelation far# 0, small mutual corre-

lations, and effectiveness of the method in controlling these 6.10 @) )
correlations are very crucial when chaoticity is required in 8.05 110
practical applications.

In order to make a complete comparison of the dynamic 6.00 m
features of Eq(6) with those of Eq(1), we do exactly the 5.05 la
same in Figs. @)-7(e) as in Figs. 1a)-1(e) by replacing

59000702 04,06 0.8 1.0 00 0204 06 08 1.0
(a) v=1 b) v=3 =
—oal | o em0t0 ®)v s . (©)=0.10 @e=0.10 10,
= —o—e=0.30 —0o—¢=0.30 p ‘3
O 04 10| 05
" 0 5 10 15 20 25 .l ™= 100
T 000204060810 0 5 10 15 20 25
— X 0.30
(d) s-o.1_o.o _ o (©) =0.10
\\ =1 3 "f: o— j=2
A =2 O O .15 —o—i=3
\\ G —a—i=4
AN 0.00}
6 5 1b 1I5 2IO 2.5 0 2 4 8 0 5 10 15 20 25
T v T

FIG. 5. The same as Fig(d) by computing Eq(6) for different FIG. 7. (a)—(e) The same as Fig.(&4-1(e), respectively, with
g's andv's. As v is large the autocorrelation goes to zero quickly asEqgs.(2) and(6) applied for computations:=8. All the weak points
7#0. of Eq. (1) manifested in Fig. 1 are satisfactorily overcome.
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FIG. 8. (a)—(e) The same as Figs.(@-7(e), respectively, with
the symmetrical coupling E@9) applied. All the behaviors of chao-

ticity of Fig. 7 are not changed by changing the coupling structure

nonlinear function. We have used other nonlinear function
to replace the logistic function Ed2) [e.g., the tent map
f(x)=1-|2x-1|, the sinusoidal mag(x)=sin(mx), and the
exponential magd(x)=x exp(1-x,)] and got similar results.

PHYSICAL REVIEW H1, 016216(2005
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FIG. 9. a=0.45,b=2.0,c=4.0, andN=10 for Eq.(10). (a) The
largest Lyapunov exponernx; of Eq. (10) plotted vse. (b) The
number of positive Lyapunov exponemisof Eq. (10) plotted vss.
(c) and (d) The same a¢a) and (b), respectively, by including the
transformations Eq.11) with T=6.07,a,=31, a,=29, a3=35, and
v=8.

=0 exist in some: regions. In Fig. &) the number of posi-
tive Lyapunov exponents of E¢10) m is plotted against.

m is small in a larges region. Figures @) and 9b) show
that the chaoticity of systei10) is weak in a large: domain
with small \; and m. Now we modify Eq.(10) by kicked
Tontrol, namely, by periodically resetting the variables by

amplifications and modulo operations as
X(t — nT+0) =F;(x(t — nT-0)),

The effectiveness of this control scheme is also independent

of the coupling structure. In Fig. 8, we use the following
symmetrically coupled map lattice:

Xnea (1) = (1 = 2e)F(xa(D)) + &[F0xa(i = 1)) + 00 + 1)),
9

Xp(i) =[2"%, (i) Imod 1, f(x) =4x(1-x),

y(t — nT+0)=F,(y(t — nT-0)), (11a
2(t — nT+0) =F5(z(t — nT-0)),
Fi(x) =2"xmod a;y,

F,(y) =2y mod ay,

and do exactly the same as in Fig. 7. Similar results can be

obtained.

F5(2) = 2"zmod as,

The method suggested in this paper is applicable not only

to coupled chaotic maps, but also to other spatiotemporal

systems, in particular to coupled chaotic oscillators with con
tinuous time. Let us considéd coupled Rossler oscillators:

% ==Y~z +e(Xiu1 X1~ 2X),
Vi=x+ay +e(YieatYia— 2y,
z=b+ (% -0z +e(z:1+7-1-22),

Xien =X Yisn = Vi Zen =21 = 1,2, ... N, (10

Whena=0.45,b=2.0, andc=4.0, the single Rossler oscilla-
tor is chaotic. In Fig. @) we calculate the largest Lyapunov
exponent\; of the coupled syster(iL.0) againste for N=10.
It is obvious that nonchaotic windows corresponding\to

01621

n=1,2,3,... . (11b)

For t#nT the dynamics of Eq(10) is not changedT is
chosen to belr=6.07, which is the average phase period of
the single Rossler equation for the given parametess,
=31, a,=29, anda3=35, which are chosen aSma—Xmin)
(Ymax— Ymin)» and  (Zmax~Zmin), respectively, with
(Xmaxrymaxa Zmax) and (Xminayminuzmin) being the maximum
and minimun values afx,y,z) of Eq. (10). In Figs. 9c) and
9(d) we do the same as i@) and(b), respectively, by incor-
porating the modifications of Eq.l1). Considerable im-
provement of chaoticity is obviously observed(@) and(d).

In conclusion, we have suggested an effective and practi-
cally realizable method, linear amplifications together with
modulo operations, for spatiotemporal chaos control. The
control purpose is to enhance chaoticity rather than suppress

6-5
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chaos. We have successfully eliminated nonchaotic windows,
increased the values and numbers of positive Lyapunov ex-
ponents, made the probability distributions of the output cha-
otic sequences more homogeneous, and reduced the correla-
tions of chaotic sequences for different times and different
space units. Though some of the observations, shown in Figs.
2 and 4, are intuitively expected and not surprising, the effi-
ciency of all these improvements are impressive both theo-
retically and conceptionally. In particular, the possibility of
applications is apparently significant.

Let us finish this presentation by a brief discussion on the
applications of this method in designing optimal random-
number generators and secure chaos-based cryptosystems.
Since chaotic sequences have advantages of nonperiodicity,
sensitive dependence on initial conditions, and randomlike
behavior, the topics of applying chaotic systems to construct
random-number generators and to design devices of secure
communications have attracted much attention in the recent
two decade$24—27. However, it has been found that most
of the chaos-based random-number generators and secure
communication schemes previously proposed fail to exhibit
the expected random and secure properties. The key reason is
that chaotic dynamics can be easily reconstructed from the
publicly transmitted signgl28—33. Let us use Eq(1) as an FIG. 10. Data plots in three-dimensional space
example to explain this point. We fix parameters0.10 and ~ (n(2),%r-1(2),X,-2(2)). £=0.1,N=2, and arbitrary initial condition
N=2 and use the chaotic sequence of the secondxy(@p is adopted. 108 100 100 mesh partition is _applled and“@ata
as our output. In Fig. 1@) we numerically plot,(2) against are used for the plots of each figuf@) Equations(1) and(2) are

. . .. applied, and continuous function relation ok,(2) to
the pair of datdx,-1(2) ,x,-2(2)), and find that the function is éxn—l(Z),Xn—z(Z)) is observed(b)~(e) The same at) with Egs. (6)

smoqth and the dynamics of_the orlglnall chaotic system i nd(2) applied forv=1,2,3, 14respectively(f) Blowup of a small
practically reconstructable. With the function surface of Flg.region of (e).

10(a) we can well predict the future output(2) from two
previous successive daig4(2) and x,5(2). Thus the sys- and 1@e) is only a necessary but not sufficient condition for

tem has very weak security and randomness. e constructing optimal random number generators and secure
Now we can compare the results of the modified system

(6) with Fig. 10@). In Figs. 1@b)-10e) we do exactly the communications.
same as in Fig. 1@ by computing Eq.6) instead of Eq.
(1). As v increases the smoothness of the function
Xn(Xn-1,%n-2) iS severely broken, and the output becomes This work was supported by the National Natural Science
more and more random. Consequently, the predictabilitfFoundation of ChindGrant Nos. 10335010, 70431002, and
from (X,-1,%n-2) t0 X, becomes more and more difficult. This 10175010, and the Nonlinear Science Project. One of the
improvement of randomness is greatly significant since theuthors(X.L.) was supported by the Special Funds for Ex-
control method is very simple and the level of secufitg.,  cellent Doctoral Dissertations, the Huo-Ying-Dong Educa-
randomnesscan be well adjusted and controlled by choos-tional Funds for Excellent Young Teachers, and the Founda-
ing differentv. Of course, the behavior shown in Figs(d0 tion for Doctoral Training.
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